Inverse odds ratio-weighted estimation for causal mediation analysis.
نویسنده
چکیده
An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature.
منابع مشابه
Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting.
Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the ...
متن کاملNonparametric estimation of natural direct and indirect effects based on inverse probability weighting
Using a sequential conditional independence assumption, this paper discusses fully nonparametric estimation of natural direct and indirect causal effects in causal mediation analysis based on inverse probability weighting. We propose estimators of the average indirect effect of a binary treatment, which operates through intermediate variables (or mediators) on the causal path between the treatm...
متن کاملTargeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research
BACKGROUND Targeted maximum likelihood estimation has been proposed for estimating marginal causal effects, and is robust to misspecification of either the treatment or outcome model. However, due perhaps to its novelty, targeted maximum likelihood estimation has not been widely used in pharmacoepidemiology. The objective of this study was to demonstrate targeted maximum likelihood estimation i...
متن کاملA Note on Formulae for Causal Mediation Analysis in an Odds Ratio Context
In a recent article, VanderWeele and Vansteelandt (American Journal of Epidemiology, 2010, 172:1339–1348) (hereafter VWV) build on results due to Judea Pearl on causal mediation analysis and derive simple closed-form expressions for so-called natural direct and indirect effects in an odds ratio context for a binary outcome and a continuous mediator. The expressions obtained by VWV make two key ...
متن کاملEstimation Based on Case-Control Designs with Known Incidence Probability
Case-control sampling is an extremely common design used to generate data to estimate effects of exposures or treatments on a binary outcome of interest when the proportion of cases (i.e., binary outcome equal to 1) in the population of interest is low. Case-control sampling represents a biased sample of a target population of interest by sampling a disproportional number of cases. Case-control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 32 26 شماره
صفحات -
تاریخ انتشار 2013